PHYSICAL REVIEW E

VOLUME 47, NUMBER 5

MAY 1993
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Statistical properties of type-I intermittency are investigated from the standpoint of the long-time
description and time correlations of intermittent time series by utilizing the So-Ose-Mori mapping. It is
shown that the two coexisting characteristics, laminar state and burst, can be singled out in a clear-cut
way by introducing the ensemble processing with a parameter g. For g— — o, the relevant statistical
quantities describe the statistics of a purely laminar state and, for g — oo, they describe the statistics of a
purely burst behavior. In particular the dynamical statistical characteristics (temporal correlations) turn
out to exhibit clear-cut change at the so-called g-phase transition point g, in the limit of the intermitten-
cy transition of the control parameter. For g <gq,, the spectral density takes a power-law form of the
frequency, the exponent 2 being independent of g. On the other hand, for g > g, it has a white-noise
spectrum. These are characteristics of the pure laminar state and burst, respectively.

PACS number(s): 02.50.—r, 05.45.+b

I. INTRODUCTION

Chaos showed that even though a dynamical law is
simple, it can exhibit complex behavior [1]. This is due to
the existence of intrinsic trajectory instability of the
dynamical system. Thus we find ourselves unable to un-
derstand the complex system in a predictable way, even
though the law of evolution is completely known. For
this reason, it is necessary to describe such chaotic sys-
tems in a statistical manner. For a Gaussian stochastic
variable, observing quantities such as the average or the
variance is sufficient for an overall description. However,
these quantities are too approximate to explain the com-
plex behavior that is generated by deterministic chaos
which consists of large fluctuations around the average.
These are due to the wandering of the phase point over
all unstable periodic orbits. Therefore we introduce the
idea of capturing all invariant sets in the system. In Ref.
[2], we proposed one approach to analyze the system fluc-
tuation by introducing the parameter g which changes
the weight realization of probability (g-weighted average).
Roughly speaking, each g corresponds to one invariant
measure. A similar idea is also used in fractal objects [3].

The fundamental idea of both the so-called f(a) spec-
trum [3] and the g-weighted average is that one can single
out any characteristic of invariant set by changing the
value of g, the degree of weighting. If one makes g corre-
spond to the inverse temperature in statistical mechanics,
these formalisms also correspond to the thermodynamics.
Hence these are called thermodynamic formalism [2-6].
This formalism of dynamical system has been discussed
traditionally from the view of the ergodic theory in
mathematics literature [7]. A similar formalism has been
found in the probability theory, namely the large devia-
tion theory [8].

The type-I intermittency is one typical route to the on-
set of chaos, observed in the broad fields such as chemical
reactions, fluid systems, magnetic systems, and so on [1].
The intermittent chaos has two characteristic regions:
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one is the laminar region where the system behaves regu-
larly, and the other is the burst region where the strong
trajectory instability exists, yielding the random reinjec-
tion. As the control parameter is changed, the phase
point suddenly starts to wander these regions.

The purpose of the present paper is to investigate the
statistical properties of the type-I intermittent chaos by
making use of the g-weighted average of the relevant
quantities and the order-g power spectrum. The latter is
introduced in order to study the various aspects of time
correlations (multicorrelations) corresponding to many
invariant measures. We will give a brief review of the
general aspects of the present approach to g-weighted
average and the order-g power spectrum in Sec. II. In
Sec. IIT the model with Markov partitions is given. We
take the So-Ose-Mori (SOM) map [9], which consists of
three linear parts as shown in Fig. 1(a). The general
analysis method for the Markov partition is also present-
ed. In Sec. IV we study the dynamics of the symbolized
coordinate (SC), and obtain some exact results for the g-
weighted average as well as the order-g power spectrum.
Section V is devoted to the numerical analysis of the dy-
namics of local expansion rate (LER). Some conclusions
are given in Sec. VI.

II. FORMULATION FOR DYNAMICAL
FLUCTUATION

We describe here briefly the method of extracting
long-time statistical characteristics and multicorrelations
for dynamical fluctuations. Let us consider a steady, sto-
chastic time series [uj} (j=1,2,3,...) numerically or ex-
perimentally observed. The finite-span average defined
by

1 n
= . .
U, jzluj (2.1)

takes various values depending on the span length n over
which the average is taken. This approaches the ensem-
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ble average U, which takes a unique value, and is iden-
tical to the ensemble average {(u ) under the ergodicity
assumption. The probability density P,(U’) that U,
takes the value U’ is given by
P, (U")=(8(U,—U") ,

n

(2.2)

where 8(g) is the delta function of g and { ) denotes the
average over the natural invariant measure which is made
of the histogram for values of U, from {u;} or is practi-
cally equal to the time average under the Sinai-Ruelle-
Bowen (SRB) property. Let us introduce the fluctuation
spectrum of o(U) by

o(U)=— lim ilnP (v) .

n— oo

(2.3)

This function evaluates the overall shape of the probabili-
ty density P,(U) and is relevant to how the probability
for the fluctuation with the value U(#U ) decreases, as
n is increased. The fluctuation spectrum o(U) plays a
fundamental role for the long-time (overall) characteriza-
tions of the time series {u;}. Moreover, let us introduce
the characteristic function ¢(g) defined by

o(g)= lim —InM (n), (2.4a)
n— o0
where the generating function M, (n) is given by
M, m=(e"""") . (2.4b)
Substituting the asymptotic form P,(U)~e "'V into
(2.4b), we obtain
¢(q)=—n%]ip[a(U')—qU’] , 2.5)

where the use of the saddle-point evaluation was made,
assuming the concavity of o [o"'(U)>0]. We define

dé(q)

Vo0 (2.62)
x(¢)= lim n{[U,—U(q)]% 0, ") /M, (n dCé‘(]q) ’
(2.6b)

where Ul(gq) and x(q) are, respectively, the average and
the variance with respect to the SRB measure (in case of
changing the weight of probability through g). The vari-
ance Y(q) turns out to be identical to the derivative of the
weighted average U(g) with respect to g. The functions
o(U) and ¢(q) are related to each other via the Legendre
transform

do(U)

2.7
U 2.7

a(U)=qU—¢(q), q=

These are fundamental functions for finding hidden fluc-
tuations, but yield no explicit information on temporal
correlations. We call them static fluctuation functions.
Some functions which are equivalent to fluctuation func-
tions are discussed broadly in Refs. [6,10].

In order to extract dynamical correlations, we define
the order-g power spectrum I, () by
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(F,(0,q)8(U,—U(g)))
I(0)= lim —" . , 2.8
a n— oo P,,(U(q)) @8
where
R D L
F (0,q)= Ve E uje '\, U;=u;—Ulq)
Jj=0
is the power spectral density of Fourier modes. I (w) is

1,
equivalent to the power spectrum of {u ;} over time re-

gions where the averages U, take the same value U(q).
In this sense I, (w) descrlbes the specific temporal corre-
lation over the time region whose average of {u;} takes
the value U(g). One should note that the average (2.8)
can be written in a different way as

(F,,(a),q)eqw">

= 1i 2.9
e VAT 29
For ¢ =0, I () coincides with the ordinary power spec-

trum. As the span length is long enough, the average
value can be uniquely determined for almost all initial
conditions. In other words, the large fluctuation due to
unstable periodic cycles cannot be observed under natural
measure whereas I (w) is able to capture such a time
correlation [11].

In a similar way to Iq(a)), we introduce the order-g
double time correlation function C,(¢) by

C,()=lim lim (@#;u;,,8(U,—Ulq

j—o n—o

)))/P,(U(q))

(2.10a)

= lim lim {2, ,e"") /M, (n) (2.10b)

j—oon—>wx

C,(1) and I (w) are related to each other via the Wiener-
Khinchin theorem:

— 1 © —iw
C,n=2—[" Lok “do, (2.11a)

S G e, (2.11b)

1= — o

I,(j)=
Thus we can get C,(¢) from I () [11]. One should men-
tioned that the equahty

lim/I,(w)= (2.12)

w—0 g
holds.

We call (2.8) and (2.9), respectively, the microcanonical
average and the canonical average. The latter is useful to
calculate I, () from time series.

In the case of one-dimensional chaotic map
X, +1=f(x,), fluctuation functions can be expanded by
using the generalized Frobenius-Perron (GFP) operator
H, as follows [12]. Let us define the GFP operator H, as

H,G(x)= [e™Y8(x —f(»)G (y)d (2.13)

for any function G (x), where u ; is assumed to be generat-

ed via u;=u(x;), u(x) being a unique function of x.

With the help of the GFP operator, M_(n) is rewritten in
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the following way:

,(n)= f Hjp
where p(x) is the natural invariant density, and satisfies
p(x)=Hp(x), H being the ordinary Frobenius-Perron
operator (H=H,_,). Let v, be the largest eigenvalue of
H,. The Perron-Frobenius theorem says v, is always
positive. The asymptotic form M, (n)~[v,]" for large n
thus yields

¢(q)=1nvq

To get the static fluctuation functions ¢(q),U(q),x(q)
and o(U) therefore we need only the largest eigenvalue of
H,.

q

On the other hand, as shown in Ref. [1
power spectrum is expanded as

x)dx , (2.14)

(2.15)

3], the order-q

I(0)= fv XU (x)[J (@) + I, (—w)
— 1712 (x)h O(x)dx , (2.16)
where % (x)=u(x)— U(q) ans
T (0)=—— 2.17)
1—-<—H,
v

q9

©(x) and h'®(x) are left and right eigenfunctions for
the largest eigenvalue of H, respectively [13]. As shown
in Ref. [13] (2.10b) can also be written in terms of H, in

the following way:

t)=fv(°’(x)ﬁ(x)

t

H
7 (x)h O(x)dx

q

(2.18)

Vq

If there exist discrete eigenvalues only, as shown in
Ref. [11], then (2.9) can be expanded as

sinh[y (”-f-iw;”]
,y(l)+l (V2]
2

I () %ZK

sinh? + sin?

o
2
(2.19)

where 3, is the summation over all eigenstates and v\’s

are the eigenvalues of H, which are ordered such that

vq>|v(q”|2|vf12)|2 -++ and
DD
Te e =y (2.20)
lfu R (xR x)dx]
x [ [ o conPoodx | | @.21)

where v(”(x) and h Y(x) are left and right eigenfunctions
for the elgenvalue v‘” of H,, respectively [13]. Equation
(2.19) implies that I, (co) is the superposition of Lorentzi-
an peaks. Thus one ﬁnds

C,()=3 KPexp[—(yP+iwP)] . (2.22)
i

The band-splitting chaos has discrete eigenvalues and in
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this case critical behaviors of order-g power spectrum
have been previously reported [14].

III. MODEL

Hereafter we consider a one-dimensional piecewise
linear map, the SOM map [9], which takes the form
Xy 41 f (x ) with

ax +0.2 (0=<x=<c¢)
fx)=14a Yx—0.8)+1 (¢<x=0.8)
—b 7 Yx—1) (0.8<x<1),

(3.1)

where a, b, and ¢ are constants satisfying 1>a >0.6,
b=0.2, and ¢ =0.8/(1+a). Its graph with a laminar or-
bit is shown in Fig. 1. This dynamics exhibits chaotic be-
havior in the interval [0,1] for @ >a,=0.6, and undergoes
a saddle-node bifurcation at a =a,. The map has an at-
tractive fixed point x*=0.2/(1—a) for a <a,. This
chaotic dynamics has two kinds of clear-cut phases. One
is the laminar phase for 0 <x <0.8 where the phase point
evolves in time in a rather regular manner. The other is
the burst phase for x > 0.8 and is the origin of irregular
temporal evolution.

The SOM map has the Markov partition at the value
a=a, (m=3,4,...) where a,, is the real solution of

am"tl4+am—5a+3=0. (3.2)

The critical point a, is given as ¢, =lim,, _, ,a, =3. At
a=a,, the partition consists of N =2m+1 subintervals.
Transition probability among these parts can be obtained
in straightforward manner by the dynamics given by
(3.1). Near a,, one obtains m =~In(a,, —a.)/In0.6 [9].

In general, when the system has a Markov partition,
the GFP operator H, can be treated in the matrix form,
and we can straightforwardly apply the method discussed

in Sec. II. The matrix element of H, is obtained as

a;, i=j+1
(Hq )ij'—' ay, j=N (3.3)
0 otherwise,
1 7 1 < ’
(a) I T { | (b) a_1 ) e
| a1
X4
0.21
0 . . : :
0 Xt 08 1 I
FIG. 1. (a) Graph of the SOM map (3.1) for a > a,, where a

laminar orbit (thin solid line) and an unstable periodic orbit
with period three (dashed line) are shown. (b) Piecewise linear
Markov map with @ =a,=0.665 (m =4), where the period-ten
orbit (heavy solid line) leads to the Markov partition
(I,L,,...,1}.



e™

a;
T

where v; and f j' are, respectively, the value of u (x) and
the slope of df (x)/dx in the jth interval of the partition.
In this paper we take wu(x) as the (LER)
[u(x)=In|f'(x)]] and the SC [i.e, u(x)=1 for
0.8<x <1 and O otherwise]. Namely v; takes In|f;| for
LER and §,,,, +, for SC, where §, ; is Kronecker’s delta.

i,2m
The temporal evolutions of these quantities are illustrated
in Fig. 2.

Furthermore (2.16) and (2.17) are given by

I()=3 v"%[J(0)+J(=0)=E] v,hY,

L, m+#0
w70
(3.4)
_ 1
J(0)=———, 3.5)
el@
E—*—H,
v,

q

where E is the N X N unit matrix and v, is the value of
7 (x) when x is in the /th interval of the Markov parti-
tion. Thus we can get I () from calculations of matrix
in the case of Markov partition.

IV. DYNAMICS OF SYMBOLIZED
COORDINATE

In this section we will consider the dynamics of the
symbolized coordinate and evaluate the fluctuation func-
tions and the order-q power spectra. First we discuss
fluctuation functions and g-phase transition. The charac-
teristic equation for the eigenvalue problem is rewritten
in the following way:
m+1

1_

a
v

1—(va)”

1
+_
N 1—wva

v

B = , 4.1)

v—a
where v is the eigenvalue of the matrix H, and B=be".
One should note that for large m, i.e., near a =a_, all ei-
genvalues of H, for ¢ <q,, g, being a certain value of g
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as shown later, are located approximately on the unit cir-
cle on the complex v plane. On the other hand, for ¢ > g,
only the largest eigenvalue is isolated and the other
remain approximately on the unit circle. By evaluating
(4.1) for m — «, i.e., in the limit a —a_, the largest eigen-
value is thus given by

1 (¢g=gq.)
Ve la.+B (g24.),
where the characteristic value g, is determined by v, =1,
which yields g, =In2=0.6931. . .. Fluctuation functions

are calculated easily from (2.4a), (2.6a), and (2.6b), in the
limit a —a,, as

(4.2)

0 for g=gq,
$lq)= In(a,+pB) for g=gq. ,

0 for g<gq,

B
(a,+B)

U(g)=
for g >g¢. ,

0 for g<gq,

+ o for g=gq,
a.

(a.+B)?

x(g)=
for g>gq, .

The fluctuation spectrum of o(U) is obtained from (2.7)
as

q.U for 0SU=A

Uln—l)q+(1—U)ln

(4.6)
for ASUZ1,

a.

where A=U(q,)=0.4. Fluctuation functions are drawn
in Fig. 3. It turns out that U(q) exhibits a discontinuous
transition at g =gq, where x(g.) diverges at a=a_ +0.
This means that the fluctuation singled out by the param-
eter value g =g, becomes extremely large at the transi-
tion point @ =a, [see (2.6b)]. Furthermore, the fluctua-
tion spectrum o (U) linearly depends on U in a certain re-
gime of U. Its slope is identical to g.. We call this anom-

—

1 In|f'(@) 1 ' i
z 1
[}

0 200 700 0

gl

400 0

Ia|£/()] " N 1
1 sC
0 | =

0 - 200 700 0 200 700

Time
(a)

Time
(c)

FIG. 2. Time series u; for SOM map near the onset of chaos (all the upper graphs are for m =10 and those below for m =20); (a)
coordinate x, (b) local expansion rate In|f’(x)], (c) symbolized coordinate (1 for 0.8 <x <1 and O otherwise). As m gets larger, the in-
termittency characteristic develops.
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oo | ' Ulq) ' I
0.4F ——m=o0
------ m=80 0.6F ®)
é(@) ——-m=40
—-—-m=20 -
0.4r
0.2 L
0.2r
r - FIG. 3. Static fluctuation functions for SC
0 . 0:.:—_—.—:.:.;_‘_—221—:—:.:.:-’5' of the SOM map at the transition point
FEEE=ET a=a,+0 (solid lines), where
5 5 —— 5 5 A ¢.=In2=0.6931..., A=U(q,)=0.4. The
o q a fluctuation functions for finite m, i.e., for
finite-number Markov partition, are also
x(a) drawn.
4+
2L
0
-
alous behavior at g =g, the g-phase transition [10,15]. Iq(w)=[Jq(a))+Jq(—w)——1]“N , (4.9)
The fundamental reason for the occurrence of such a |
transition is due to the enhancement of intermittent be- J(w)= . , (4.10)
e

havior, i.e., due to the decrease of the probability that the
phase point stays in the burst region. We can thus clearly
separate the laminar phase for ¢ <gq, and the burst phase
for g >q,. Such separation is possible only by introduc-
ing the intensive variable q.

Let xy(q) be the susceptibility calculated with the
characteristic function for the periodicity N of the Mar-
kov partition [x(g)=limy_, ., Xn(g)]. Evaluating (4.1),
we obtain the asymptotic behavior of x (gq). For large N,
its peak height y,(g), where @ is the peak position of
xn(q), obeys

Xn(@)xN . 4.7)

Furthermore, the peak position §(N) of xx(q) is numeri-
cally found to obey

g.—qx<N"", (4.8)

where 17=0.8. Thus we observe the phase transition at
g =q. as q is changed near the bifurcation point of chaos.
The fluctuation functions for finite N are also drawn in
Fig. 3. The above treatment helps us to clearly single out
the characteristics of the long-time dynamics composed
of laminar and burst phases.

Next we turn to the order-g power spectrum. By tak-
ing u(x) as the symbolized coordinate, (3.4) and (3.5)
reduce to

where uy is a normalization constant [13]. Moreover by
using (3.3), (4.10) is rewritten in the following way:

J ()=

(4.11)

where D=ei“’/vq. We will discuss the asymptotics of
1,() for (i) ¢ > g, and (ii) ¢ <g, near a =a,.
(i) g > g, (burst phase). In this region [D|<1 so one

can neglect all terms with D™ in (4.11) for large m. Thus
we obtain

v, —ae'®
Jylw)=——te (4.12)
vq—(a+B)e”"
Therefore
a
- . 4.13)
I,(w) a+B'uN (
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I,(®) is thus independent of » and this implies no tem- v, N. From (4.1) we obtain

poral correlation, which corresponds to the SOM map N_

containing the structure of the tent map in the burst re- vy =(1=a—=B)/B. (4.14)

gion.
(ii) g <gq. (laminar phase). In this region the leading

term of Vg is 1, but we must consider the correction of
J

Inserting (4.14) into (4.11) and replacing v, by 1 we ob-
tain

(1—ae'®)(1—ae ~'*)
(1—ae ~")[1—(a+Be'®]—(1—a —B)(1—ae'®)eN
Since (4.15) contains e V%, I,(w) has the period of 277/N. Therefore I (w) has a train of peaks, which is shown in Fig. 4.

These peaks become sharp as g decreases further below g.. Furthermore, from (4.2) a +5—1 as g —gq,, so we note that
the coefficient of e’¥® term decreases as g —gq,. In other words, as g is increased, the peaks disappear at g =¢, and

J (@)= (4.15)

I,(w) changes to be white-noise type for ¢ >g..

Next we consider the envelope of I, (). The extremum points {w, } of I, (@) are determined by

1—ae’® piNo— iB(1—38)sin(w)+8(1—cosw)[1+a?—2a cosw]'’?

(4.16)

1—ae i (1—e ~'®)§(1+a)—ib% ~“sinw—2ia sinw

where §=a +f3 and the +(—) sign corresponds to the positions of the local maxima (minima) of I (). By inserting

(4.16) into (4.15), the envelopes of I, (w) are given by

[B(1—8)+a(l—cosw)—pB(1—8)( A4 cosw+ B sinw) Juy

[1

Jlo

where A +iB is equal to the right-hand side of (4.16).
After a straightforward calculation for small o, Eq.
(4.17) yields

©~ % (upper envelope)
[Zy (@) Jeny constant (lower envelope) .

(4.18)
On the other hand, in the limit ¢ — — o0 we find
-2
o™~ * (upper envelope)
(g (@) Jeny L)z (lower envelope) (4.19)

for small . Therefore the upper envelope of I, () exhib-
its a power-law dependence on o with the exponent 2 in-
dependently of g. This behavior of the envelope is illus-

I(w) F ™]
10% E

1072

T

10—4_ B =

3| €

FIG. 4. The order-g power spectrum I,(w) of SC for several
g’s for m =20. For large g, it is independent of g. On the other
hand, for small g, I,(w) shows a train of peaks.

T  8?— 5(1—cosw)—(1—5)[ A (1—a cosw)— Bbsina]

(4.17)

trated in Fig. 5. The solid line 3=0 (i.e., ¢g=— ) ap-
parently shows [I,(®)],, <©~ % whereas for B=0.4
(g=gq.), I,(w) becomes independent of w. Upper en-
velopes obey power law in the low-frequency region for
g <q. and the region shrinks as ¢g—gq,. For lower en-
velopes the w-independent region shrinks as g — — o and
at g— — o I (w) obeys power law in a wide o region.
The above qualitative change between two regions
q <gq, and g > g, is an eminent characteristic of order-gq
power spectra associated with the g-phase transition.
Changing the value of g, one can thus single out various
statistical characteristics (even including a pure burst
phase). In the previous paper we obtained the ! law
for the order-g power spectrum for the tangency map
whose order of tangency is 2[13]. In a type-I intermitten-
cy map, the order-qg power spectrum for the symbolized

T T
——q=—00
Iws) F Nl ¢=—0.6931 }
" NN
10%F SN ——g=0.4055
E
1%k R
i
1072f
L
N 1
102 107! 100

Wi
FIG. 5. The envelope of I,(w) in the case of SC for =0.0
(g=— ), 0.1 (= —0.6931), 0.2 (¢=0.0), and 0.3 (g =0.4055)
in the limit m = 0, i.e., a =a,+0. Solid line denotes the case of
g=—o0 (B=0).
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dynamics always shows a power-law form ¢ for ¢
smaller than a characteristic value of ¢, and the exponent
6 depends only on the order of tangency at channel and is
independent of g. We plan to discuss this dependence in
a separate paper.

V. DYNAMICS OF LOCAL EXPANSION RATES

In this section we will consider the dynamics of local
expansion rates from the view-point of fluctuation func-
tions and order-g power spectrum. Fluctuation functions
and the g-phase transition of LER have been discussed a
in previous paper [15]. Moreover, there have been
several published works on thermodynamic formalisms
for local expansion rates [4,16]. In this case, the charac-
teristic equation is written in the following way:
m+1

— e
.

1 1—(va)”
_+_.__
v—a W 1l—va

B = , (5.1
where v is the eigenvalue, a=a '~ %, and B=b'"9. Eigen-
values of H, are also separated into two groups as in the
symbolized dynamics case, which is shown in Fig. 6. The
largest eigenvalue for m — o« is found to be

1 (g=gq.)
’Vq—

at+B (g2q.) . (5.2)

Since v, =1, we get g.=0.2728... . Now the fluctua-
tion functions are obtained from (2.4a), (2.6a), and (2.6b)
as

0 for g =g,
#(q)= In(a+pB) for g=gq,. , (5.3)
I
q .U for0=U=A
olU)= U+ R(In(aeY))+R(n(b " 'e™Y))
In(a /b)
where R(x)=xIlnx, U, =—Inb~1.6094, and

A=U(g,+0)=0.8517. These fluctuation functions are
drawn in Fig. 7. In the case of LER, the g-phase transi-
tion also occurs. However, the critical point
q.=0.2728 . .. is different from that for the symbolized
dynamics. The asymptotic behaviors of fluctuation func-
tions for LER are the same as those for SC.
Furthermore, after a few calculations, the peak height
Xn(q) of xn(g) is found to obey
xn(g) <N (5.7)
for large N. The numerical observation shows that §(N),
the peak position of yy(q), satisfies

g.—qxN"", (5.8)

where 17=0.8. Therefore one observes the phase transi-
tion at g =q, as q is changed near the bifurcation point.
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FIG. 6. Distribution of eigenvalues v;” of H, for LER. As g

increases, the largest eigenvalue increases, and the radius of the
circle on which other eigenvalues lie becomes large.

0 for g <gq,
Ulg)= —(alna,+B1nb) (5:4)
@tp) 47
0 for g <gq,
x(g)= |+ for g=g¢, (5.5)
af(Ilna, —1nb )? for >4
(a+B)? .

The fluctuation spectrum o (U) is obtained from (2.7)

(5.6)

—Inln(a/b) forA=U=U_,, ,

f

These fluctuation functions for finite N are shown also in
Fig. 7. As shown in Ref. [17], their fluctuation functions
satisfy the scaling laws for finite N.

Next, we turn to the order-g power spectrum. Equa-
tions (3.4) and (3.5) were evaluated numerically. I (o) is
shown in Fig. 8. As in the SC case, these spectra exhibit
white-noise-type characteristics for g > g, and m trains of
peaks for g <g,. This transition between two regions
occurs in a clear-cut way as g is changed as shown in Fig.
8. Each peak of I () for g <g, becomes sharper as N in-
creases. The height of peak is larger and sharper in the
low frequency region. (In Fig. 8 we do not see the true
height at small frequencies because the peaks are too
sharp to sample with equal increment of .) Envelopes of
2kth and (2k +1)th peaks seem to obey different power
laws, which are illustrated in Fig. 9. The exponents of
odd and even peaks are found to be —3.8 and — 1.9, re-
spectively. This is quite different from the SC case.
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FIG. 7. Static fluctuation functions for LER
of the SOM map at a=a,+0 (solid lines),

- where q.=0.2728. . ., A=U(q.+0)
20 ~0.8517... . The fluctuation functions for
(9) r (c) 7 o) finite m, i.e., for finite-number Markov parti-
C ! 1 oal tion, are also shown.
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The complicated structure of I (@) illustrated in Fig. 8
comes from a discontinuity of u (x) at channel. As the
system parameter approaches the onset of chaos, the re-
gion of channel becomes narrow. For almost all time, the
orbit stays in the channel region. For g <g,, we observe
most dominant motion, which is laminar motion on small
channel. However, if there is some discontinuity of u (x)
at the channel, we observe different local average U,, be-
tween reinjections before and after the channel, even
though the channel becomes so small. These U, are pro-
duced from 2m and m period, respectively. Therefore
I,(w) is composed of peaks corresponding to 2m and m
period. As a result, the shape of I (») becomes compli-
cated. Local expansion rates are usually continuous at

the channel. In this respect, the SOM map is a special

I(w)

10°

10%F 7|}

107!

—2l 1 . —
10755 0.5 1l

3|€

FIG. 8. I, () in the case of LER for several ¢’s at m =20.
One observes a qualitative change of I,(w) when ¢ =g..

example which gives a complicated structure of I (@) of
LER. But we must stress that this kind of I, (w) is ubi-
quitous for observation with discontinuities only in cases
where the realization probability is dominant.

VI. CONCLUSION

In the present paper we analyzed the type-I intermit-
tency phenomena using the So-Ose-Mori map whose or-
der of tangency is unity. This was carried out by observ-
ing how the fluctuation characteristics of the symbolized
dynamics and the local expansion rate dynamics change
as the system approaches the intermittency transition
point. Their statistical properties were investigated from
the standpoint of the fluctuation functions ¢(q), U(q),
o(U), etc., and the order-q power spectrum I, (w), which
are, respectively, relevant to the overall (long-time) statis-
tics of temporal fluctuations and the explicit temporal
correlations. A distinctive feature of the present ap-
proach is that we can clearly single out the two different
characteristics of motion, laminar phase and burst, by in-
troducing an intensive variable q. By changing the value
of g, one can describe many statistics which are due to
coexistence of laminar phase and burst.

It was shown that near the transition point of the
external control parameter, the relevant functions for the
fluctuation spectrum exhibit nonanalytical behaviors at
certain value of g as the parameter g is changed. This
phenomenon is known as the g-phase transition. We
have shown that such transitions in the g space are ob-
served both for SC and for LER, though their transition
points are different from each other. Below the transition
point gq.(>0), the statistics are dominantly determined
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FIG. 9. The envelope of I,(w) in case of LER for several g: (a) for odd peaks and (b) for even peaks.

by laminar phase and, above g,, by burst phase. At the
transition point g,, the role of these two distinctive
motion interchanges as g is changed. This is the reason
for the existence of such g-phase transition.

In the present paper we found several scaling behaviors
of relevant functions near the critical point. Let us give a
comment on the asymptotic form (4.8). Recently Mori
pointed out that the asymptotic form (4.8) could be re-
placed as

g.—q <N In(N) (6.1)
in the critical regions [18]. This is obtained by analyzing

v—1 —e—N6—D
- ’
1—a

q9—q, (6.2)
which is derived by evaluating (4.1) for large N and
v—1<<1. The exponent n from (6.1) is 1—0 and is
different from 0.8 numerically obtained. The law (6.1) is
valid for sufficiently large N[=0(10%)]. The value
171=0.8 is obtained up to N=0(10?). For such N values
the logarithmic factor cannot be neglected and tends to
decrease the exponent 1. In this sense our numerical re-
sult 0.8 is not incompatible with (6.1). Furthermore, by
making use of (6.2) one can derive the analytical expres-
sion for the fluctuation functions.

As is well known, the hallmark of the type-1 intermit-
tency is the anomalous temporal correlations, i.e., power
law of the power spectral density. In the present paper
we have calculated the order-g power spectra I (w) for
SC and LER. Both these power spectra also undergo the
transition at g, which is the same as that for the fluctua-
tion functions. In the limit of the intermittency transi-
tion of the control parameter, the local maximum of the
order-g power spectrum drastically changes as ¢ is
changed, i.e., for ¢ <g, (laminar phase) it shows a power
law @ 2, the exponent 2 being independent of g, while for

q >gq, (burst) it is independent of w (white noise). The
power spectrum of the type-I intermittency is believed to
show a power law, but in addition we also found white-
noise characteristics. This is, as is expected, due to the
fact that we succeeded in taking out the burst dynamics
separately by choosing the parameter value of g.

In a previous paper, we found o~ ! for intermittency
map whose order of tangency of channel is 2. The power
law of the order-g power spectrum, with the g-
independent exponent, is a distinctive feature of type-I in-
termittency. Such a simple law for the order-g power
spectrum is reduced to a “simple” structure for the tem-
poral behaviors of intermittency. In fact we have a sys-
tem with the g-dependent exponent as reported in Ref.
[19]. Recently Fukushima and Yamada carried out the
experiment on the breakdown of the synchronization of
the chaotic oscillators in an electronic circuit and ob-
served intermittent characteristics. This intermittency is
quite different from the three well-known types of inter-
mittency. They analyzed intermittent signals with the
order-g power spectrum, and found that it exhibit a
power law %%, where the exponent 6 depends monoto-
nously on g. This tells us that, contrary to the type-I in-
termittency, the intermittency associated with the
desynchronization of chaos contains more complex tem-
poral evolution.
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